首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4239篇
  免费   70篇
  国内免费   6篇
电工技术   44篇
综合类   2篇
化学工业   662篇
金属工艺   78篇
机械仪表   104篇
建筑科学   146篇
矿业工程   28篇
能源动力   73篇
轻工业   411篇
水利工程   40篇
石油天然气   9篇
无线电   335篇
一般工业技术   554篇
冶金工业   1307篇
原子能技术   49篇
自动化技术   473篇
  2021年   34篇
  2020年   22篇
  2019年   29篇
  2018年   44篇
  2017年   43篇
  2016年   38篇
  2015年   34篇
  2014年   45篇
  2013年   213篇
  2012年   113篇
  2011年   138篇
  2010年   133篇
  2009年   117篇
  2008年   162篇
  2007年   158篇
  2006年   134篇
  2005年   152篇
  2004年   118篇
  2003年   130篇
  2002年   104篇
  2001年   79篇
  2000年   85篇
  1999年   103篇
  1998年   263篇
  1997年   151篇
  1996年   134篇
  1995年   103篇
  1994年   87篇
  1993年   86篇
  1992年   60篇
  1991年   45篇
  1990年   58篇
  1989年   61篇
  1988年   65篇
  1987年   63篇
  1986年   47篇
  1985年   53篇
  1984年   51篇
  1983年   55篇
  1982年   59篇
  1981年   44篇
  1980年   32篇
  1979年   41篇
  1978年   46篇
  1977年   48篇
  1976年   74篇
  1975年   40篇
  1974年   34篇
  1973年   50篇
  1971年   27篇
排序方式: 共有4315条查询结果,搜索用时 234 毫秒
21.
Urbanization is increasing rapidly in semi-arid environments and is predicted to alter atmospheric deposition of nutrients and pollutants to cities as well as to ecosystems downwind. We examined patterns of wet and coarse dry deposition chemistry over a five-year period at 7 sites across the Central Arizona-Phoenix (CAP) study area, one of two urban sites within the National Science Foundation's Long-Term Ecological Research (LTER) program. Wet and dry deposition of organic carbon (oC) were significantly elevated in the urban core; in contrast, mean annual wet and dry fluxes of nitrogen (N) were low (<6 kg ha(-1) yr(-1)) compared to previous estimates and did not differ significantly among sites. Wet deposition of sulfate (SO(4)2-) was high across CAP (mean 1.39 kg ha(-1) yr(-1) as S) and represented the dominant anion in rainfall. Dry deposition rates did not show strong seasonal trends with the exception of oC, which was 3-fold higher in winter than in summer; ammonium (NH4+) deposition was high but more variable. Dry deposition of NO3- and oC was strongly correlated with particulate base cations and dust-derived soluble reactive phosphorus (SRP), suggesting that urban-derived dust is scrubbing the atmosphere of acidic gases and entrained particles and increasing local deposition. Differences between measured and predicted rates of dry N deposition to the urban core may be explained by incomplete collection of gas phase N on surrogate deposition surfaces in this hot and arid environment. The extent of urban enhancement of cations and oC inputs to desert ecosystems appears to be restricted to the urbanized metropolitan area rather than extending far downwind, although a low number of sites make it difficult to resolve this spatial pattern. Nevertheless, wet and dry inputs may be important for biogeochemical cycles in nutrient and carbon-poor desert ecosystems within and near arid cities.  相似文献   
22.
Ma H  Allen HE  Yin Y 《Water research》2001,35(4):985-996
Dissolved organic matter (DOM) was concentrated from natural waters and the effluent of a wastewater treatment plant using a portable reverse osmosis (RO) system. The humic acid (HA), fulvic acid (FA) and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The FA fractions predominated in natural waters and accounted for 54-68% of the total amount of dissolved organic carbon (DOC), whereas the HA and HyI fractions constituted, respectively, 13-29 and 9-30% of the total DOC. The effluent of wastewater was almost devoid of HA and the HyI fraction exceeded FA. The elemental compositions of HA and FA were in the ranges typical for natural humic materials, but the HyI fractions did not exhibit humic character. 1H NMR spectra revealed that the HyI fractions were almost devoid of aromatic protons and the aliphatic region featured more sharp signals than HA and FA fractions, indicating that HyI fractions were consisted of more simple compounds and less complex mixtures. The aliphatic functional groups in these fractions of DOM samples followed the order HA < FA HyI. The rate of Cu complexation with the HyI fraction was faster than the rate with the HA or FA fraction of the Suwannee River DOM, implying that copper reacted with relatively weak ligands faster than with strong ligands.  相似文献   
23.
Micro-machining has gained increased application to produce miniaturized parts in various industries. However, the uncut chip thickness in micro-machining is comparable to cutting edge radius. The relationship between the cutting edge radius and uncut chip thickness has been a subject matter of increasing interest. The acoustic emission (AE) signal can reflect the stress wave caused by the sudden release of the energy of the deformed materials. To improve the precision of machining system, determination of the minimum uncut chip thickness was investigated in this paper. The AE signal generated during micro-cutting experiments was used to analyze the chip formation in micro-end milling of Inconel 718. The finite element method (FEM) simulation was used to analyze the results of the experiments. The results showed that the cutting tool geometry and material properties affected the minimum uncut chip thickness. The estimation of the minimum uncut chip thickness based on AE signals can produce quite satisfactory results. The research on the minimum uncut chip thickness can provide theoretical basis for analysis of surface quality and optimal choice of cutting parameters.  相似文献   
24.
This research study reports the creep behavior analysis of the new composite materials manufactured by 3D printing technology. Nylon was used as a polymer matrix, and carbon fiber, Kevlar, and fiberglass were used as reinforcing agents. Since the properties of 3D-printed components are usually insufficient for robust engineering applications, adding reinforcing fibers improves the performance of these components for several engineering applications. Fiber-reinforced additive manufacturing (FRAM) is an almost 4-year-old technology. Additionally, there is not sufficient research on the behavior of FRAM components specifically at high temperatures. Therefore, the investigation of the high-temperature behavioral analysis of FRAM components was focused on in this study. Creep properties of the composite specimens reinforced by different fibers were measured by the dynamic mechanical thermal analysis system. The statistical analyses were conducted to analyze the experimental data using mathematical models. The microstructural analysis was performed to further investigate parts’ morphology, 3D printing quality, and fracture mechanisms. The results indicated that the creep compliance of reinforced composite specimens was significantly improved in comparison with pure nylon. Overall, this paper presents quantitative creep analysis results demonstrating the capabilities of FRAM components to be used for several engineering applications.  相似文献   
25.
The two SARS-CoV-2 proteases, i. e. the main protease (Mpro) and the papain-like protease (PLpro), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PLpro catalysis in vitro. The assay was applied to investigate the effect of reported small-molecule PLpro inhibitors and selected Mpro inhibitors on PLpro catalysis. The results reveal that some, but not all, PLpro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing Mpro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PLpro. Less selective Mpro inhibitors, e. g. auranofin, inhibit PLpro, highlighting the potential for dual PLpro/Mpro inhibition. MS-based PLpro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.  相似文献   
26.
Metal nanoparticles (NPs) scatter and absorb light in precise, designable ways, making them agile candidates for a variety of biomedical applications. When NPs are introduced to a physiological environment and interact with cells, their physicochemical properties can change as proteins adsorb on their surface and they agglomerate within intracellular endosomal vesicles. Since the plasmonic properties of metal NPs are dependent on their geometry and local environment, these physicochemical changes may alter the NPs'' plasmonic properties, on which applications such as plasmonic photothermal therapy and photonic gene circuits are based. Here we systematically study and quantify how metal NPs'' optical spectra change upon introduction to a cellular environment in which NPs agglomerate within endosomal vesicles. Using darkfield hyperspectral imaging, we measure changes in the peak wavelength, broadening, and distribution of 100-nm spherical gold NPs'' optical spectra following introduction to human breast adenocarcinoma Sk-Br-3 cells as a function of NP exposure dose and time. On a cellular level, spectra shift up to 78.6 ± 23.5 nm after 24 h of NP exposure. Importantly, spectra broaden with time, achieving a spectral width of 105.9 ± 11.7 nm at 95% of the spectrum''s maximum intensity after 24 h. On an individual intracellular NP cluster (NPC) level, spectra also show significant shifting, broadening, and heterogeneity after 24 h. Cellular transmission electron microscopy (TEM) and electromagnetic simulations of NPCs support the trends in spectral changes we measured. These quantitative data can help guide the design of metal NPs introduced to cellular environments in plasmonic NP-mediated biomedical technologies.  相似文献   
27.
Mechanical forces are obviously important in the assembly of three-dimensional multicellular structures, but their detailed role is often unclear. We have used growing microcolonies of the bacterium Escherichia coli to investigate the role of mechanical forces in the transition from two-dimensional growth (on the interface between a hard surface and a soft agarose pad) to three-dimensional growth (invasion of the agarose). We measure the position within the colony where the invasion transition happens, the cell density within the colony and the colony size at the transition as functions of the concentration of the agarose. We use a phenomenological theory, combined with individual-based computer simulations, to show how mechanical forces acting between the bacterial cells, and between the bacteria and the surrounding matrix, lead to the complex phenomena observed in our experiments—in particular the observation that agarose concentration non-trivially affects the colony size at transition. Matching these approaches leads to a prediction for how the friction between the bacteria and the agarose should vary with agarose concentration. Our experimental conditions mimic numerous clinical and environmental scenarios in which bacteria invade soft matrices, as well as shedding more general light on the transition between two- and three-dimensional growth in multicellular assemblies.  相似文献   
28.
29.
We investigate source characteristics and emission dynamics of volatile organic compounds (VOCs) in a single‐family house in California utilizing time‐ and space‐resolved measurements. About 200 VOC signals, corresponding to more than 200 species, were measured during 8 weeks in summer and five in winter. Spatially resolved measurements, along with tracer data, reveal that VOCs in the living space were mainly emitted directly into that space, with minor contributions from the crawlspace, attic, or outdoors. Time‐resolved measurements in the living space exhibited baseline levels far above outdoor levels for most VOCs; many compounds also displayed patterns of intermittent short‐term enhancements (spikes) well above the indoor baseline. Compounds were categorized as “high‐baseline” or “spike‐dominated” based on indoor‐to‐outdoor concentration ratio and indoor mean‐to‐median ratio. Short‐term spikes were associated with occupants and their activities, especially cooking. High‐baseline compounds indicate continuous indoor emissions from building materials and furnishings. Indoor emission rates for high‐baseline species, quantified with 2‐hour resolution, exhibited strong temperature dependence and were affected by air‐change rates. Decomposition of wooden building materials is suggested as a major source for acetic acid, formic acid, and methanol, which together accounted for ~75% of the total continuous indoor emissions of high‐baseline species.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号